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SUMMARY

A new numerical model has been developed to simulate the transport of dye in primary sedimentation tanks
operating under neutral density conditions. A multidimensional algorithm based on a new skew third-order
upwinding scheme (STOUS) is used to eliminate numerical diffusion. This algorithm introduces cross-difference
terms to overcome the instability problems of the componentwise one-dimensional formlae for simulating
multidimensional flows. Small physically unrealistic overshooting and undershooting have been avoided by
using a well-established technique known as the universal limiter. A well-known rotating velocity field test was
used to show the capability of STOUS in eliminating numerical diffusion. The STOUS results are compared with
another third-order upwinding technique known as UTOPIA. The velocity field is obtained by solving the
equations of motion in the vorticity–streamfunction formulation. Ak–E model is used to simulate the turbulence
phenomena. The velocity field compares favourably with previous measurements and with UTOPIA results. An
additional differential equation governing the unsteady transport of dye in a steady flow field is solved to
calculate the dye concentration and to produce flow-through curves (FTCs) which are used in evaluating the
hydraulic efficiency of settling tanks. The resulting FTC was compared with both measurements and numerical
results predicted by various discretization schemes.# 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The lack of an accurate simulation of one-dimensional highly convective unsteady flows has been
referred to as the ‘ultimate embarrassment’.1 Second-order central schemes can simulate smooth
profiles (low curvature) with satisfactory accuracy; however, these schemes suffer from numerical
oscillations when a sudden change in gradient (high curvature) exists. This is due to the inherent
spatial dispersion terms (third derivative) in the truncation error. First-order upwinding can handle
sharp profiles, but the spatial second-derivative terms in the truncation error overwhelm any physical
diffusion.2 Second-order upwinding is considered to be better than second-order central and first-
order upwinding schemes. The leading-order truncation error is a dispersive third derivative;
however, in some cases the dissipation derivative terms are stronger and dampen dispersive
oscillations.3 Fromm4 introduced a convection algorithm in which he averaged second-order
upwinding with the explicit second-order central scheme.5 In this algorithm the leading phase error of
the upwind difference approximately cancels the lagging phase error of the central scheme.
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Leonard6 introduced two convection algorithms based on spatial quadratic upstream interpolation
schemes. The first one is for steady state and is referred to as QUICK (quadratic upstream
interpolation for convective kinematics), while the other is for unsteady simulation and is known as
QUICKEST (QUICK with estimated streaming terms). QUICKEST is an explicit third-order
upwinding scheme and has a high-order spatial approximation accompanied by a consistently
accurate temporal formulation. The leading truncation error is of a dissipative type (fourth order) and
of a higher order than the physical diffusion3 with the diffusion terms modelled to a consistent order.
The use of higher-order spatial approximations with a lower-order temporal formulation would be
equivalent to first-order upwinding in resolving the unsteady features.7 Schemes based on the use of
time–space characteristics have been formulated and applied by several researchers.8–10

The third-order upwinding approach was first introduced by Leonard,6 who later showed this to be
the rational basis for computational fluid dynamics;11 however, a large number of researchers are still
using first-order upwinding (or the hybrid scheme) as a robust way of modelling highly convective
flows. First-order upwinding or any other technique which suffers from numerical diffusion adds
artificial viscosity to the physical viscosity. Leonard and Niknafs3 as well as Leschziner and Rodi12

indicated that it does not make sense to use a highly sophisticated multiequation turbulence model to
determine the eddy viscosity while the equations of motion are modelled with a convective scheme
suffering from numerical diffusion.

Third-order upwinding schemes are susceptible to physically unrealistic overshooting and
undershooting of the order of 5%. Although these oscillations are small compared with the other
methods, they may cause problems when solving the non-linear equations of motion. These
oscillations can be eliminated by using a well-established technique known as the universal limiter.13

The extension of a one-dimensional (1D) unsteady algorithm to two dimensions is another serious
problem, since 1D algorithms do not automatically generalize to two and three dimensions by
applying the one-dimensional scheme componentwise.14 This is due to the absence of the cross-terms
in the Taylor expansion. Leonard and Niknafs15 developed a high-accuracy algorithm using the
concept of vector transient interpolation modelling:

F�x; t � Dt� � F�x ÿ vDt; t�: �1�

Using this concept, they introduced multidimensional first-order upwinding, second-order central and
third-order upwinding algorithms for square grids. The third-order upwinding algorithm was referred
to as UTOPIA (uniformly third-order polynomial interpolation algorithm). This can be considered to
be an extension of the one-dimensional QUICKEST scheme.6 They evaluated the performance of the
different algorithms by using a well-known rotating velocity field convection problem as a
benchmark test. Two non-oscillatory total-variation-diminishing (TVD) schemes designed by Roe16

were also tested. The TVD-Minmod scheme was found to be quite diffusive, while the TVD-
Superbee scheme tended to steepen and clip narrow extrema. They also made a Fourier–von
Neumann analysis17,18of the multidimensional algorithms and compared Taylor expansions of their
complex amplitude ratio (amplification factor) with that of the exact solution. It was concluded that
UTOPIA contains all necessary cross-terms to third order and matches all terms in the Taylor
expansion of the complex amplitude ratio.

Ekebjaerg and Justesen19 introduced a nominally third-order, two-dimensional convection–
diffusion scheme. They eliminated the truncation error terms arising from a lower-order scheme. The
non-conservative scheme was then rewritten in a conservative pseudoflux difference form. The
pseudofluxes chosen by Ekebjaerg and Justesen are not unique. Rasch20 developed a third-order semi-
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Lagrangian convection scheme in which he introduced weighting parameters to overcome the non-
uniqueness problem. Rasch uses weighting parameters to generate a family of possible pseudoflux
difference algorithms.

Recently, Leonard21 has introduced a flux integral method (FIM) for multidimensional convection
and diffusion. The convective-plus-diffusive flux at each face of a control volume cell is estimated by
integrating the transported variable and its face-normal derivative over the volume swept out by the
convecting velocity field. This gives a unique description of fluxes. The FIM has been applied to
different schemes. The new version of UTOPIA (eight-point scheme) has been introduced by using
the FIM as shown in Figure 2.

In this paper another convective scheme referred to as the skew third-order upwinding scheme
(STOUS) is introduced. Unlike UTOPIA, STOUS uses a quadratic interpolation that is spatially
skewed at the earlier time level to estimate the face value. The different interpolation points for
UTOPIA and STOUS are compared in Figure 2. STOUS accurately estimates the face value of the
control volume (CV) by following the space–time path of a fluid particle in choosing the interpolation
points. The Fourier–von Neumann analysis shows that STOUS is nearly third-order accurate. STOUS
is formulated in such a way that it is not explicitly dependent on the aspect ratioDx=Dy; however,Dx
andDy are incorporated in the respective Courant numbers. Both UTOPIA and STOUS suffer from
small oscillations which can be avoided by applying the universal limiter.13 A rotating velocity field
benchmark test is used to show the validity of STOUS and the results are compared with UTOPIA in
Figure 6.

The main purpose of this paper is to introduce an algorithm with low numerical diffusion that can
be used to simulate unsteady flows in general and the transport of dye in settling tanks in particular.
As a first step the explicit third-order upwinding scheme (STOUS) is tested by solving the coupled
non-linear equations of motion for turbulent recirculating flow in sedimentation tanks. This type of
flow has been studied by many researchers with various types of numerical methods.22–26The effect
of density currents on the flow in final clarifiers has been studied by Devantier and Larock27, and
Zhou and McCorquodale.28 None of these studies used an explicit (Lagrangian) technique, although
these schemes, which are based on the use of time–space characteristics, are very attractive from the
fundamental point of view, since they closely mimic the transient convection process. Some
researchers used semi-Lagrangian schemes which are non-conservative when applied to unsteady
problems.

In this paper the flow in a primary rectangular sedimentation tank is predicted using the unsteady
vorticity–streamfunction formulation. The convective and diffusive terms are modelled by third-order
upwinding techniques. This scheme overcomes instability problems which arise when convection
terms are prevalent and eliminates the need for very fine grids or first-order upwinding. Thek–E
turbulence model is used to simulate turbulence. The computer code was tested for several grids with
different aspect ratios and in all cases it converged to the same steady state solution.

The convection–diffusion equation is solved with third-order upwinding techniques to obtain flow-
through curves (FTCs) which in turn can be used to evaluate the hydraulic efficiency of settling tanks.
The simulation of FTCs requires the use of a technique with low numerical diffusion. Adams and
Rodi29 used the QUICK scheme to model the unsteady transport equation. The QUICK algorithm is
based on the assumption of slow time variation. Owing to theO�Dt� time truncation error, they had to
use a very small time step. They did not report how they eliminated the oscillations. Szalaiet al.(30)

used the hybrid linear parabolic approximation (HLPA) together with a three-level fully implicit
(TLFI) scheme. The degree of accuracy was restricted to second order. Finally, it should be pointed
out that further research is under way, by the authors, to use the highly accurate third-order
upwinding technique in general to simulate unsteady effects of density flows in sedimentation
tanks.
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2. NUMERICAL TECHNIQUES

Unsteady, two dimensional convection and diffusion of a scalarF are described by
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whereu andv are the convection velocities,Gx andGy are the diffusion coefficients in thex- andy-
direction respectively andS is the source term. This equation can be integrated in time fromt to
t � Dt and in space across the control volume cell (Figure 1) to yield
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in which the overbar represents the spatial average. The terms on the right-hand side of (3) are all
time-averaged. The subscript notation is defined in Figure 1 and the superscript represents the time
level.

2.1. Uniformly Third-Order Polynomial Interpolation Algorithm (UTOPIA)

Leonard and Niknafs15 introduced this algorithm as an extension of the QUICKEST scheme.6 The
two dimensional scheme is based on the third-order polynomial expression

f
n
� a � bx � cx2

� dx3
� ey � fy2

� gy3
� hxy � ix2y � jxy2

; �4�

requiring 10 collocation points. Using a square grid of unit size and following the west face stencil
shown in Figure 2, the resulting formula for the west face value can be then written as
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Figure 1. Control volume cell
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where thex andy Courant numbers are

Cx �
uDt

Dx
; Cy �

vDt

Dy
�6�

and

GRADN � FP ÿ FW;

GRADT �

FW ÿ FSW for Cx > 0 and Cy > 0;

FNW ÿ FW for Cx > 0 and Cy < 0;

FP ÿ FS for Cx < 0 and Cy > 0;

FN ÿ FP for Cx < 0 and Cy < 0;

8

>
>
>
<

>
>
>
:
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�
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(

It is clear from the above expressions that the face valueFw should be modified to account for the
aspect ratioDx=Dy if an arbitrary rectangular element is used. Using a convective estimate of the
average face gradients, the corresponding face gradient is given by
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The latest version of UTOPIA with the FIM uses 12 collocation points with eight nodes per control
volume face.21

Figure 2. Computational stencil foru; v > 0�0: (a) STOUS; (b) UTOPIA; (c) UTOPIA (flux integral method)
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2.2. Skew Third Order Upwinding Scheme (STOUS)

In this algorithm the face value is determined by fixing a spatially skewed quadratic interpolation
scheme among the points shown in Figure 2. The west face value for constantDx andDy is given by

fw � NPfP � NWfW � NWWfWW � NSWWfSWW � NSWfSW � NSSWWfSSWW; �8�

where NK is the quadratic interpolation function (influence coefficient) of nodeK. All the
interpolation functions should be evaluated at point O (origination point), which is the intersection
with the t-plane of the time–space trajectory that passes through the centroid of the cell face. To
locate point O,dx anddy can be calculated from

dx �
uDt

2
; dy �

nDt

2
: �9�

Thus

dx �
CxDx

2
; dy �

CyDy

2
: �10�

Evaluating the interpolation functions at point O and substituting into (7) (see Appendix I), the west
face value becomes
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which can be written in a similar form to (5) as
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where CURVTS and TWISTS refer to the skew transversal curvature and skew twist terms
respectively. They depend on the direction of the velocity vector at the cell face as given in Appendix
I. The factor 1

8 (rather than1
6) comes from the use of nodal values and not from cell averages.

Following Leonard15,31 and introducing the physical diffusion contribution in estimating the face
value, the west face value can be written as
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where
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The STOUS face gradient is given by
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STOUS uses 11 collocation points with seven nodes per control volume face.

2.3. Stability analysis of STOUS and UTOPIA

The von Neumann stability analysis has been applied to both STOUS and UTOPIA. In this analysis
the Fourier component of the solution is defined as

F
n
i;j � V neI�iyx�jyy�

; �16�

whereV n is the amplitude function at time leveln of the particular component whose phase angles
are defined asyx � KxDx and yy � KyDy, where Kx and Ky are the wave numbers. The Fourier
components at different points are given in Appendix II where it is shown that the STOUS
amplification factor can be given as

GSTOUS � RSCx � RSCy � RSDx � RSDy � ISCx � ISCy � ISDx � ISDy; �17�

whereRSCx, andRSCy, represent the real parts of the STOUS advective terms in thex- andy-direction
respectively,RSDx, andRSDy represent the real parts of the STOUS diffusion terms in thex- andy-
direction respectively andISCx; ISCy; ISDx, andISDy represent the imaginary parts of the corresponding
terms. These terms are as follows (details are given in Appendix II):
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with similar expressions for they-direction.
The UTOPIA amplification factor is

GUTOPIA � RUCx � RUCy � RUDx � RUDy � RUCx � IUDy � IUDx � IUDy; �22�
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The real and imaginary parts of the UTOPIA diffusion terms,RUDx;RUDy; IUDx, andIUDy, are the same
as the STOUS terms, since both STOUS and UTOPIA have the same face gradient expression.

By parametric scanning over a wide range of values ofa, Cx andCy, the complete stability region
�G < 1� for STOUS and UTOPIA was found as shown in Figures 3(a)–3(d). It is evident that in
STOUS the stability range is considerably wider than in UTOPIA. Figure 4(a) shows the stability
range for the caseCx � Cy; the maximum Courant number for STOUS is 0�5 compared with 0�25 for
UTOPIA. Figure 4(b) shows another case�Cx � 0�2� in which the maximumCy is also higher for
STOUS than for UTOPIA. Figure 4(c) compares STOUS and UTOPIA for the case of pure advection,
i.e. a � 0�0 �Pe � 1�, and indicates that STOUS has a wider stability range in this case. The cross-
term CxCy is the main reason for the stability of STOUS and UTOPIA; the schemes such as the
componentwise application of the 1D algorithms without this term are unstable.

Both UTOPIA and STOUS suffer from numerical oscillations at a sharp gradient. Although
STOUS produces very small oscillations (about 5%) compared with other schemes, it is still
important to eliminate these oscillations, especially when solving the non-linear equations of motion.
A well-developed bounding technique known as the universal limiter (UL) is used to avoid these
oscillations (Figure 5) Details of the universal limiter can be found elsewhere;13,15 however, the
following brief description of the procedure is given.

(i) For each face, based on the direction of the normal velocity, the valuesfU (upstream point),
fc (cell) andfD (downstream point) are identified.

(ii) The face values are determined by STOUS (or UTOPIA).
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(iii) The normalized face and cell values are computed by

�f �
fÿ fU

fD ÿ fU
: �25�

(iv) If the point (fC;ff � falls within the triangular region of Figure 5, then the computation
proceeds to the next CV face.

Figure 3. Stability range: (a) UTOPIA (maxa); (b) STOUS (maxa); (c) UTOPIA (min a); (d) STOUS (mina)

Figure 4(a). Comparison between UTOPIA and STOUS forCx � Cy: ——j , UTOPIA (maxa); - - - - -j , UTOPIA (min a);
——h , STOUS (maxa); - - - - -h , STOUS (mina)
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(v) If not, fv is limited to the nearest appropriate constraint boundary at the givenfc-value.
(vi) The unnormalized face values are determined.

A 1D adaptive discriminator is used in each direction to avoid clipping narrow extrema,3 this can
identify well-defined local narrow physical extrema and automatically switch off the universal
limiter, but keep it in regions where unphysical overshoots would otherwise occur.

2.4. Benchmark test problem

The rotating velocity field problem is used as a benchmark test. For pure convection the exact
solution is known. As an initial condition a cylinder with a base diameter of 40% of the domain width
is used. The computation was carried out on meshes ranging from 306 30 to 70670 for a half-
rotation in the counter clockwise direction. First-order upwinding, STOUS and UTOPIA were used in

Figure 4(b). Comparison betweemn UTOPIA and STOUS forCx � 0�2: ——j , UTOPIA (maxa); - - - - -j , UTOPIA (min );
——h , STOUS (maxa); - - - - -h , STOUS (mina)

Figure 4(c). Comparison between UTOPIA and STOUS for pure advection (Pe�?)
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this test problem. For the first-order upwinding scheme the alternate direction implicit (ADI)
technique was used so that the maximum Courant number and thus the least CPU time could be
obtained. For each grid, multiple trials were made to determine the maximum allowable Courant
number after which instability problems occurred. Explicit algorithms were used for STOUS and
UTOPIA. It was found that the maximum Courant number for STOUS (1�0–1�2) is greater than for
UTOPIA (0�8–0�9). Table I gives the computed maximum Courant numbers for each technique, the
absolute errors and the CPU times in minutes on a Pentium-90 PC. Figures 6(a)–6(d) show the first-
order upwinding, STOUS and UTOPIA predictions and the analytical solution for a grid of 70670.
Figure 7 shows the cost (CPU time) versus the absolute error, which is defined as

e �
P

i

P

j

jfcomp ÿ fexactj

Number of grid points
: �26�

Figure 5. Universal limiter (UL) constraints in normalized variable diagram (NVD)

Table I. Comparison between rirst-order upwinding, STOUS and UTOPIA

Mesh First-order
upwinding STOUS UTOPIA

Cmax � 1�5 1�7 Cmax � 1�0 Cmax � 0�875

e Tmin e Tmin e Tmin

306 30 0�0732 3�2 0�0268 4�5 0�0262 5�5
356 35 0�0647 7�2 0�0232 10 0�0226 12
406 40 0�0576 15 0�0201 19 0�0196 24
456 45 0�0547 26 0�0184 34 0�0180 42
506 50 0�0518 45 0�0172 62 0�0157 70
556 55 0�0503 56 0�0162 99 0�0157 106
606 60 0�0460 82 0�0149 152 0�0143 164
706 70 0�0403 213 0�0130 300 0�0125 341
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Figure 6. Rotating velocity test problem for a grid of 70670: (a) UTOPIA (C�0�875); (b) STOUS (C� 1�0); (c) first-order
upwinding (C� 1�5); (d) exact solution

Figure 7. Cost (CPU time)–absolute error relation:m, HYBRID; �, STOUS;1, UTOPIA
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It is clear from Figure 7 that both STOUS and UTOPIA give much better accuracy (less absolute
error) for the same cost (CPU time) compared with first-order upwinding.

3. SETTLING TANK MODEL

3.1. General equations

The equations describing a two-dimensional, unsteady, turbulent flow in a rectangular
sedimentation basin are

@u*
@x*

�
@v*
@y*

� 0; �27�

@u*
@t*

� u*
@u*
@x*

� v*
@u*
@y*

� ÿ
1
r*

@p*
@x*

�
@

@x*
nt*

@u*
@x*

� �

�
@

@y*
nt*

@u*
@y*

� �

� Sy*; �28�

@v*
@t*

� u*
@v*
@x*

� v*
@v*
@y*

� ÿ
1
r*

@p*
@x*

�
@

@x*
nt*

@v*
@x*

� �

�
@

@y*
nt*

@v*
@y*

� �

� Fg* � S
v
*; �29�

in which u* andv* are the horizontal and vertical mean velocity components respectively,r* is the
fluid density, vt* is the eddy viscosity andp* is the pressure.Fg* represents the body force
(gravitational force). Since the eddy viscosityvt* is not constant, the two source termsSu* andSv* do
not vanish on application of the continuity equation.28 The superscript asterisks in (27)–(29) denote
dimensional quantities. Using the relationships

u* �
@c*
@y*

; v* � ÿ
@c*
@x*

; o* �
@u*
@y*

ÿ
@v*
@x*

; �30�

wherec* is the streamfunction ando* is the vorticity, equation (27)–(30) can be replaced by the
equations

@o*
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�
@u*o*
@x*

�
@v*o*
@y*

�
@

@x*
nt*

@o

@x*

� �
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H
2
c* � o* �32�

or, in non-dimensional form,

@o

@t
�
@uo

@x
�
@vo

@y
�

@

@x
nt
@o

@x

� �

�
@

@y
nt
@o

@y

� �

� So; �33�

H
2
c � o; �34�

in which u � u*=U ; v � v*=U ; x � x*=H; y � y*=H; t � t*=�H=U �; vt � vt*=UH � Reÿ1
t ;

c � c*=UH and o � o*=�U=H�. The characteristic velocity and length scalesU and H are
selected to be convective scales, i.e. the depth-averaged longitudinal velocity and the tank depth
respectively.

3.2. Laminar flow past a backward-facing step

A benchmark test problem of flow over a backward-facing step was used to check the
implementation of the streamfunction–vorticity formulation. Equations (31)–(32) can be used to
describe the two-dimensional laminar flow after replacing the eddy viscosity by the molecular
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kinematic viscosity of water. The no slip boundary condition was used for the upper and lower walls.
A fully developed velocity distribution was used at the inlet. The outlet boundary condition was
@u=@x � 0. The solution starts by assigning initial values forc ando. A typical computational cycle
begins by using equation (31) to advance the solution ofo

n to t � Dt. The SOR method is used to find
the newcn�1 at all points from the differenced form of (32), using the newon�1 at the interior points
as the source term. The velocity components are updated by substituting thec

n�1-values in (30).
Finally, vorticity values on�1 are calculated for boundary nodes. The second-order-accurate
boundary condition for vorticity along a no-slip wall is used. This boundary condition is

oN �
3oNÿ1 ÿ oN

Dn2
ÿ

1
2oN�1; �35�

whereN andN ÿ 1 denote quantities evaluated at the wall and one point in from the wall respectively
andDn is the normal distance betweenN andN ÿ 1. The computational cycle is repeated until the
specified convergence criterion for a steady state is satisfied. An expansion ratio E (ratio of step
height to inlet channel height) of 0�5 was used with Reynolds numberRe� 200 (based on the average
inlet velocity and twice the inlet channel height). The predicted velocity distribution is shown in
Figure 8(a) shows good agreement between the STOUS velocity distribution and experimental data
of Armaly et al.32

Figure 8(b). Velocity profiles at various locations:j, Thangam;�, experimental data of Armalyet al.32

Figure 8(a). Velocity field for backward-facing step
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3.3. Turbulence model

The eddy viscosity coefficient is related to the turbulent kinetic energyk and its rate of dissipationE
by

nt �
cmk2

E
: �36�

The variablesk and E, are computed from the transport equations33
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whereP, the turbulent kinetic energy production, is given by

P � nt 2
@u

@x

� �2

�2
@v

@y

� �2

�
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@y
�
@v

@x

� �2
" #

�39�

and whichcm; cE1; cE2; cE2; sk and sE have the values 0�09, 1�44, 1�92, 1�0, and 1�3 respectively.33

Variables appearing in (36)–(39) are non-dimensional such thatk* � kU2 and E* � EU3
=H . The k

andE advection terms have been modelled by STOUS. Equations (33)–(34) and (36)–(38) represent a
closed system of equations relatingo;c; k and E.

An unsteady dye concentration equation is solved to obtain the FTC corresponding to the
converged steady state velocity field:

@C

@t
�
@uC

@x
�
@vC

@y
�

@

@x
Gt

@C

@x

� �

�
@

@y
Gt

@C

@y

� �

; �40�

in which Gt is the turbulent mass diffusivity which is assumed to be proportional to the eddy
viscosity, i.e.Gt � nt=sc, wheresc is the turbulent Schmidt number.

3.4. Boundary conditions

3.4.1. Inlet boundary.Figure 9 shows the flow domain and associated boundaries. An
experimentally determined, three-zone parabolic profile of the horizontal velocity is imposed along
B1.23 The vorticity is obtained by differentiating the velocity distribution, while the streamfunction is

Figure 9. Defining sketch and boundary conditions for 17634 mesh
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calculated by integrating the velocity over B1. The inlet boundary conditions for thek–E model
were25

k � ak
U2

0

U2
; E � c3=4

m

k3=2

lm
; �41�

in which U0 � q=hi and lm � 0�5cmhi=H , whereq is the flow discharge per unit width andhi is the
baffle opening (Figure 9).ak � 0�2 in this study owing to the presence of the upstream baffles which
caused the incoming flow to be highly turbulent.25 For typical inlet conditions,ak is in the range
0�.05–0�1. The transient dye inlet boundary condition was set toC � Ci and held held at this value for
a time corresponding to the dye injection time; thereafterC � 0�0:

An external node is required for STOUS to be applied at B1; locally one-dimensional quadratic
behaviour forc is assumed normal to the inlet, which implies that the vorticity gradient@o=@x � 0.
This does not affect the accuracy of the flow field computations, because the vorticity at the inlet is
mainly transported by advection owing to the high inlet velocity. This is achieved by setting

fN�1 � fN ; �42�

wherefN�1 andfN are the external and boundary points respectively. At the corner the point SSWW
can be taken as an average of the two adjacent points SWW and SSW.

3.4.2. Free surface boundary.The rigid lid approximation was applied with the normal gradients
of k; E;C and v set to zero. The full-slip condition is used, i.e.u is free to develop andC � 1�0
(excluding the sink point). In the absence of applied shear, such as wind shear and temperature
gradients,o � 0�0 (excluding the sink point).

3.4.3. Wall boundary.Along the inlet baffle B2,c � 1�0; along the bottom B4 and the end wall
B5 (excluding the sink point),c � 0�0. The wall function approach was used to determinec; k andE.
In this approach the mesh does not extend all the way to the wall, because the turbulence model is
only valid in the fully turbulent regime zone. Therefore the computational domain is shifted a small
distanceyn from the wall (Figure 9). The friction velocityUp* at a point P (the first grid point from the
wall) can be calculated from

UP

UP*
�

1
k

ln�Ey�n �; �43�

in which Up is the parallel velocity at P,y�n � ynUp*=n, andE is the roughness parameter which was
taken as 9�8, andk is the von Karman constant (0�42). At the interface the shear stress based on the
outer flow domain is matched with the wall shear stress in the boundary layer. Thus for the bottom of
the tank the vorticity at the edge of the near wall region is given by

ow* �
UP*

2

n*tP
; �44�

in whichow* is the dimensional wall vorticity. Both quadratic and cubic extrapolations ofc normal to
the boundary were examined to calculate the external node at the bottom. For the cubic extrapolation
(Figure 10), the vorticity gradient is given by

@o

@y

� �

N

�
oN�1=2 ÿ oNÿ1=2

Dy
; �45�
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where

oN�1=2 �
cR ÿ 2cN�1=2 � cL

Dx2
�
cN ÿ 2cN�1=2 � cN�1

Dy2
; �46�

and thus the external node can be calculated as

oN�1 � oN � Dy
@o

@y

� �

N

: �47�

No significant difference in the velocity field was indicated when the two types of boundary
conditions were compared. This could be due to the boundary condition used, i.e. the eddy viscosity
at the bottom of the tank as predicted by thek–E model. For thek–� turbulence model the kinetic
energy production is assumed to be equal to the dissipation rate near the boundaries. The boundary
conditions fork andE become34

k �
UP*

2

p
cm

; E �
UP*

3

kyn
: �48�

A more general treatment can also be used in whichk is determined by a balance of diffusion,
convection, production and dissipation for near-wall control volumes.35 Assuming a zero-gradient
boundary condition, an external node is computed and thus STOUS can be applied. For the dye
transport equation the zero-flux boundary condition is used, i.e@C=@N � 0�0:

3.4.4. Outlet boundary.The normal gradients ofk, E, andC were set to zero at the outlet.29 The
approach of Imam and McCorquodale23 is used for the boundary conditions ofo andc.

3.4.5. Initial conditions.An irrotational flow solution of (34), i.e.o� 0�0, is used for the initial
values ofc and thus the velocity componentsu andv are obtained at the internal nodes using (30).
The initial values fork andE are not crucial as long as the unsteady flow equations are solved until
steady state is reached. For the transient dye simulation the concentration of the dye was set to zero.

Figure 10. STOUS boundary conditions showing cubic extrapolation ofC using internal node values
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3.5. Grid independence test

Various grids have been used to check the grid convergence. The maximum streamfunction at the
centre of the recirculating zone (cc) was used to check the grid convergence. A relatively short
settling tank (L=H � 2) was used to test a wide range of mesh sizes. Figure 11 shows the effect of the
mesh size oncc; it is evident that as the meshDx diminishes,cc converges in the limit to 1�095.
Because of non-linearities inherent in the UL, the time step was chosen so that the maximum Courant
number would not exceed 0�3.36 No significant difference was found in the flow patterns for the grids
tested.

3.6. Application of model

The model was applied to simulate the hydrodynamics and dye concentration fields in rectangular
tanks studied experimentally by Imam.37(37). Figure 12 shows two velocity fields for two flow
situations using two different grids. In the first case the flow rate was 45�2 cm3 s_1 cm71. The
comparison between the measured and predicted fields is shown in Figure 13. The inlet velocity is
assumed to follow the three zone inlet velocity distribution given by Imam.37 In the second case a
higher flow rate (109�2 cm3 sÿ1 cm71) is used. The reattachment length is also calculated for various
flow rates using the inlet profile. The reattachment length is in good agreement with the experimental
data (Figure 14). Although the flow is highly turbulent, the reattachment length increases as the flow
rate increases owing to the increase in the tank water depth with flow and the consequent increase in
the baffle submergence.

An FTC represents the time response at the exit of a tank to a tracer pulse at the inlet. This curve is
used for evaluating the hydraulic efficiency of settling tanks. As shown in Figure 15, the time axis has
been normalized by the theoretical detention timeTd � L*H*=q and the concentration axis by
C0 � CiDtiq=L*H*, the concentration that would exist in the tank if all the tracer mass were
completely mixed throughout the tank. The FTC calculations were carried out with STOUS (10620,
10640 and 20640 grids) and UTOPIA (10668 grid) for spatial discretization of the convection
terms. Both UTOPIA and STOUS yielded the same solution. The FTC was found to be insensitive to

Figure 11. Effect of mesh size on maximum streamfunctionCc at centre of recirulating zone
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the time step variation as long as the Courant number was less than 0�3–0�5. Another mass transport
model based on the HYBRID technique was developed. The hydrodynamic velocity and eddy
viscosity fields predicted by STOUS were used for the HYBRID model. Figure 15 compares the
predictions obtained by STOUS and HYBRID with experimental data of Imam.37 STOUS
overpredicts the FTC peak by 20% which could be due to the low mixing generated by thek–E
model. In the past, researchers have found that thek–E overestimates the mixing in curved flows;
however, some of this overestimation may have been due to numerical diffusion. Three-dimensional
effects such as side boundary layers could result in higher mixing in the experiment. Comparison of
HYBRID and STOUS suggests that the HYBRID results are subject to severe numerical diffusion.

The STOUS solution generated using a 10620 grid agrees with the QUICK solution generated
using a 25625 grid.29 Therefore STOUS could be considered as a coarse grid method, which
implies that largerDt-values can be used. It should also be noted that the use of implicit schemes (e.g.
QUICK with ADI) may have less restrictive time step conditions, but is more expensive per time step
because of iteration requirements.

Figure 12. Predicted velocity field of Windsor clarifier:37 (a)Q� 37�7 cm3 sÿ1 cm71, L�112 cm,H�16�5 cm,hi � 8�25 cm,
10640 grid, velocity scale 0�0–5�0; (b) Q� 109�4 cm3 s71 cm71, L�73 cm,H�11�95 cm,hi � 5.0 cm, 17634 grid,

velocity scale 0�0–5�0

Figure 13. Comparision of predicted velocity field by STOUS and experimental data of Imam;37 Q�45�2 cm3 s71 cm71,
L�73 cm,H�10�3 cm, hi � 4�8 cm, 17634 grid
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4. CONCLUSIONS

The new numerical technique STOUS overcomes the instability and artificial diffusion problems of
other numerical techniques while providing a wider stability range than UTOPIA; in addition,
STOUS has been formulated for a grid aspect ratio51, which is advantageous for flow in shallow
tanks. For unsteady flows it gives much better accuracy than first-order upwinding for the same CPU
cost. The algorithm has been verified with a benchmark test of 2D laminar flow past a backward
facing step. STOUS has also been used to simulate the turbulent flow in settling tanks. The velocity
predictions and reattachment lengths are in good agreement with the experimental data, which
indicates that STOUS is capable of simulating steady recirculating turbulent flows.

Figure 14. Variation in reattachemtn length with flow rate;L�73 cm,hi � 4�8 cm:m, computed; ————, Imam’s data37

Figure 15. Comparision of predicted FTC using STOUS (sc � 0�7) with dataq of Imam37 (3, exp. A5;m exp. A6; , exp. A8;1,
exp. A9) and HYBRID scheme�sc � 0�7�
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STOUS has also been used to simulate the unsteady dye transport in settling tanks. STOUS
adequately predicts the arrival and peak concentration time of the dye at the effluent weir but
overpredicts the experimental FTC peak by 20%. A comparison of the HYBRID results with
experimental data and the results of STOUS indicates that HYBRID suffers from high numerical
diffusion, thus justifying the use of low-numerical-diffusion techniques such as STOUS or UTOPIA
for problems such as dye transport.
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APPENDIX I: STOUS FORMULATION

The west face formula is derived to show the approach. By choosing the interpolation points as
shown in Figure 2(a), a triangle is formed assuming thatDx andDy are constants but not necessarily
equal. Introducing a local system of co-ordinatesx andy (Figure 16), the six interpolation functions
can be defined

NP � 0�5x�x ÿ Dx�=�Dx�2;

NW � ÿ1 � x�y � Dx � Dy � x ÿ 2Dy � Dx�=Dy�Dx�2;

NWW � 0�5�y � Dx � Dy � x ÿ 2Dy � Dx��y � Dx � Dy � x ÿ Dy � Dx�=�x�2�Dy�2;

NSW � x � y=Dy � Dx;

NSWW � ÿ1 � y�y � Dx � Dy � x ÿ 2Dy � Dx�=Dx�Dy�2;

NSSWW � 0�5y�y ÿ Dy�=�Dy�2:

To evaluate these interpolation functions at point O, the co-ordinatesx andy of point O should be
calculated. These co-ordinates are given as

�XO;YO� � �1�5Dx ÿ CxDx=2;ÿCy=2�:

Substituting in (8) and arranging, the final formula (11) is obtained. For a complete west face
computational stencil the new terms CURVTS and TWISTS for all flow cases are defined (Figure 17)
as

CURVTS �

fSSWW ÿ 2fSWW � fWW for Cx > 0 and Cy > 0;

fSSE ÿ 2fSE � fE for Cx < 0 and Cy > 0;

fNNWW ÿ 2fNNW � fWW for Cx > 0 and Cy < 0;

fNNE ÿ 2fNE � fE for Cx < 0 and Cy� < 0;

8

>
>
>
<

>
>
>
:

TWISTS �

fSWW ÿ fWW ÿ fSW � fW for Cx > 0 and Cy > 0;

fSE ÿ fE ÿ fS � fP for Cx < 0 and Cy > 0;

fNWW ÿ fWW ÿ fNW � fW for Cx > 0 and Cy < 0;

fNE ÿ fE ÿ fN � fP for Cx < 0 and Cy < 0;

8

>
>
>
<

>
>
>
:

The south face formula and corresponding terms are defined in the same manner.
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APPENDIX II: AMPLIFICATION FACTOR

STOUS

Referring to Figure 2, the Fourier component of the solution at point P is given as

f
n
P � V neIiyx eIjyy

: �49�

The components at points E, W, N, S, WW, SW, NW and SSWW can likewise be determined.
Substituting the Fourier component into the convection–diffusion equation (3) results in a
complicated expression; therefore each term of (3) will be presented separately. The convection

Figure 16. West face interpolation triangle foru; v > 0�0

Figure 17. Computational stencils: (a) south face foru; v > 0�0; (b) west face foru < 0�0; v > 0�0; (c) south face for
u0�0; v > 0�0
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term in thex-direction can be re-written as

ÿCx�fe ÿ fw� � ÿCx
fE ÿ fW

2
�

C2
x

2
�fE ÿ 2fP � fW�

�
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8
ÿ

C3
x

8
ÿ

Cxa

2

� �

�fE ÿ 3fP � 3fW ÿ fWW�

�
CxCy

2
�fP ÿ fS ÿ fW � fSW�

ÿ
CxC2

y

8
ÿ

CxCy

4
�

Cxa

2

� �

�fSSW ÿ 2fSW � fW ÿ fSSWW � 2fSWW ÿ fWW�

ÿ
C2

x Cy

4
ÿ

CxCy

4

� �

�2�fSW ÿ fW� ÿ �fS ÿ fP� ÿ �fSWW ÿ fWW��; �50�

in which

fE ÿ fW

2
� V neIiyx eIiyy�I sin yx�; �51�

fE ÿ 2fP � fW � V neIiyx eIjyy �ÿ2�1 ÿ cos yx��; �52�

fE ÿ 3fP � 3fW ÿ fWW � V neIiyx eIjyy �4 cos yx ÿ 2I sin yx ÿ cos 2yx � I sin 2yx ÿ 3�; �53�

fP ÿ fS ÿ fW � fSW � V neIiyx eIjyy �1 ÿ cos yx ÿ sin yx sin yy � I sin yx�1 ÿ cos yy�

� I sin yy�1 ÿ cos yx� ÿ cos yy�1 ÿ cos yx��; �54�

fSSW ÿ 2fSW � fW ÿ fSSWW � 2fSWW ÿ fWW

� V neIiyx eIjyy ��cos 2yy ÿ I sin 2yy��cos yx ÿ I sin yx� ÿ 2�cos yy ÿ I sin yy��cos yx ÿ I sin yx�

� �cos yx ÿ I sin yx� ÿ �cos 2yy ÿ I sin 2yy��cos 2yx ÿ I sin 2yx�

� 2�cos yy ÿ I sin yy��cos 2yx ÿ I sin 2yx� ÿ �cos 2yx ÿ I sin 2yx��: �55�

The convection term in they-direction can be similarly derived. The diffusion term in thex-direction
can be rewritten as

a
@f

@x

� �

e

ÿ
@f

@x

� �

w

� �

Dx � a 2 cos yx ÿ 2 ÿ
Cx

2
�ÿ2�1 ÿ cos yx�

2
� 2I sin yx�1 ÿ cos yx��

�

ÿ
Cy

2
�2�cos yx ÿ 1��1 ÿ cos yy� � 2I sin yy�sin yy�sin yx ÿ cos yy��

�

�56�

and similarly the diffusion coefficient in they-direction can be determined. The amplification factor
equation for STOUS is obtained by combining these terms in one expression.
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UTOPIA

The convection term in thex direction is

ÿCx�fe ÿ fw� � ÿCx
fE ÿ fW
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��fE ÿ fES� � �fW ÿ fSW� ÿ 2�fP ÿ fS��; �57�

to which

fN ÿ 2fP � fS ÿ fNW � fW ÿ fSW � V neIiyx eIjyy �ÿ2�1 ÿ cos yy��1 ÿ cos yx�

� 2I�cos yy ÿ sin yx��; �58�

fE ÿ fES � fW ÿ fSW ÿ 2fP � 2fS � V neIkyx eIjyy �2 cos yx�1 ÿ sin yy� ÿ 2�1 ÿ cos yy�

ÿ 2I sin yy�1 ÿ cos yx��: �59�

The diffusion terms for UTOPIA are the same as for STOUS.
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